
Customization, reusability and near-miss design

Martin S. Feather
USC / Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

U. S. A.
feather@isi.edu

In ‘Automating Software Design: Interactive Design’ Workshop Notes from the Ninth National
Conference on Artificial Intelligence (AAAI-91), pages 34-39. Workshop Notes available as
Technical Report No. RS-91-287 from Information Sciences Institute, 4676 Admiralty Way, Marina
del Rey, CA 90292, USA.

1 Introduction

Reusable software components offer the promise of facilitating the rapid construction of large and
complex software systems. One of the impediments to the success of this approach, however, is the
tension between making reusable components as widely applicable as possible, while retaining
their individual simplicity and effectiveness. Wide applicability of individual components is
desirable so that they can be reused in many circumstances, thus avoiding having to populate such a
library with many similar versions of each component. Conversely, the more options and features
that are built in to a single component, the less simple it is to construct in the first place, and the
more work is required to correctly instantiate it for some given use.

‘Evolution transformations’ are suggested as a means to alleviate this dilemma. Applied to a
software component, an evolution transformation changes the meaning of that component in some
well-determined manner. This promises to make a library of software components more versatile it
is no longer necessary to retrieve a component that exactly matches the case in hand; rather, a
component close to the need would suffice, after which evolution transformations would be applied
to customize it appropriately. This means the library can be smaller, and individual components can
be simpler. Furthermore, the organization of components in the library can profitably use these
evolution transformations as the relationships between pairs of closely related components, neither
of which is a strict refinement of the other.

What does this have to do with interactive design? If brings to the fore a mode of interaction
concerned with mismatch and evolution, rather than with selection and instantiation. If this is so, it
is appropriate to consider how interaction can support this activity.

These ideas are, to date, merely ideas. Within the ARIES project (of ISI and Lockheed Sanders
[7]), we have developed and used evolution transformations to help in requirements acquisition and
specification construction [6, 5]. However, we have not (yet) investigated the above hypotheses for
software component libraries. Nevertheless, it is on the basis of the insights gained from our
experience with evolution transformations that my above proposals are formulated. The next
section offers a simple example of specification and evolution as brief illustration of the above
points. In the final section I make some observations on the implications of this approach for
interactive design, relating these general observations to specific points of the example.

2 Example of Specification and Evolution

The example will present a simple initial specification, two different evolutions of that
specification, and finally the specification that combines both of those evolutions. Two points
should be borne in mind while viewing this example:

• The example deals only with specifications of a task, not the programs that would actually
implement those specifications. This is a consequence of our particular view of requirements,
specification and implementation. We look to program transformation to bridge the gap between
specification and implementation. Preliminary results suggest that the transformational
development of a specification can be reused to good effect to facilitate the transformational
development of an changed (evolved) version of that specification [4, 3]. Furthermore, we believe
that for most real-world problems the development of a formal specification is itself a difficult
activity, in many cases more difficult than the subsequent implementation from that specification.
Thus, since transformational implementation is not the focus of this paper, we deal only with
specifications and their evolutions.

• The simple initial specification that begins the example might seem too simple. Such
simplicity is deliberate, however, because it allows us to start from an idealized abstraction of the
problem, and thereafter incrementally and independently introduce the details that characterize
more realistic versions of the specification.

2.1 Evolution Example - Retail Company
The example concerns inventory control within a retail company, and is loosely based on the
specification given in [9]. Briefly, this involves a stock of parts, customers ordering parts, and a
factory restocking parts when the company's stock is exhausted. It is easy to imagine that a library
of software specification components would contain descriptions of systems of this nature.

Since the primary goal is to illustrate the issues of near-miss specification and customization, I will
not provide descriptions of the specification language or evolution transformations beyond those
necessary to motivate this example. More details of the specification language, Gist, and the role of
evolution transformations in the parallel elaboration of specifications can be found in [2].

2.2 Simple initial specification

We begin with the specification of an extremely simple instance of such a company and its
operating environment (namely, customers that issue orders, and factory that replenishes parts).
This captures the spirit of the operations of a retail company, but avoids many details. An
explanation of the concepts used follows the specification.

type part;

relation Owner(part,
 owner:customer union retail-company union factory) ;

type order;

relation Customer(part.customer) };

type customer with
{ demon ISSUE-ORDER() := create order with
 { Customer <- (the customer) } };

type retail-company with
{ demon HANDLE-ORDER(order)
 when start extant order
 := let (p:part | p.Owner = (the retail-company))
 p.Owner <- order.Customer;

demon REPLENISH()
when start not exists (p:part)
 p.Owner = (the retail-company)
:= ASK-FOR-REPLENISHMENT() };

type factory with
{ var replenishment-quantity:integer;
procedure ASK-FOR-REPLENISHMENT()
:= loop for x from 1 to replenishment-quantity
 do create part with { Owner <- (the retail-company) } }

Types and relations model information in the retail-company world: part, order, customer,
retail-company and factory are declared as types; objects in the specification will be instances
of these. Customer and Owner are declared as binary relations - the former relates objects of type
order to objects of type customer, while the latter relates objects of type part to objects of the
union of the types customer, retail-company and factory.

Relations queries retrieve objects associated with other objects, e.g., order.Customer retrieves the
customer object that is associated to order by the Customer relation.

Execution of statements changes this information by creating or destroying objects, and by
inserting or removing relationships among objects. E.g., p. Owner <- order.Customer changes
the Owner relationship between part p and its current owner to instead relate p to the customer
object denoted by order.Customer - i.e., this statement models the transfer of a part to the
customer who issued the order (and furthermore, because the part was selected to be one whose
owner was the retail company - p:part | p.Owner = (the retail-company) - the transferred
part must come from the retail-company. Object creation is illustrated in create order with {
Customer <- (the customer) }, which creates a new object of type order and puts it into the
Customer relation with the object denoted by the customer (because of the context in which this
occurs, this is the customer who is creating the order).

Procedures provide the usual procedural abstraction. Here ASK-FOR-REPLENISHMENT is used to
communicate between the retail-company and the factory.

Demons cause activity to happen in response to situations arising. E.g., HANDLE-ORDER has the
keyword when followed by the condition (a predicate) start extant order. When this predicate is true
(i.e., when the order first comes into being), the demon initiates its response (the statement
following the := symbol). In this case, the response is the activity to transfer a part to the customer.
Omitting the when and its condition is equivalent to nondeterministically choosing to perform the
response (as in the ISSUE-ORDER demon, modelling customers unpredictably issuing orders to be
filled by the retail company). The instance of the type to which a demon belongs is the object
which is said to be performing the response, e.g., the retail-company performs the response of the
HANDLE-ORDER demon, individual customers perform the response of the ISSUE-ORDER demon, etc.

There are a number of obvious ways in which the above is trivial, e.g., there is only one kind of
part; an order is always for a single part. The purpose is to capture the 'essence' of the retail-
company notion in this specification. We examine next how to use evolution transformations to
introduce more details, exceptional cases, etc.

2.3 Evolving the initial specification to have multiple kinds of parts

As the first example of evolution, consider that there could be different kinds of parts. Thus,
customers' orders must additionally specify the kind of part, the HANDLE-ORDER demon must give
the customer the appropriate kind of part, and the REPLENISH demon must ask for replenishment of
the appropriate kind of part when the company stocks of that kind are exhausted. Essentially, we
must parameterize the specification where it deals with parts to take into account the kind of part.
The end result of this is the following slightly more complicated specification (new or changed
lines are marked with | at the left):
| type kind;

 type part;

 relation Owner(part,
 owner:customer union retail-company union factory) ;

| relation Part-Kind(part,kind);

 type order;

 relation Customer(part,customer);

| relation Order-Kind(order,kind);

 type customer with
 { demon ORDER()
 := create order with
 { Customer <- (the customer),
| Order-Kind <- (any kind) } };

 type retail-company with
 { demon HANDLE-ORDER(order)
 when start extant order
 := let (p:part |
 p.Owner = (the retail-company)
| and
| p.Part-Kind = order.Order-Kind)
 p.Owner <- order.Customer;

| demon REPLENISH(k:kind)
| when start not exists (p:part)
| p.Owner = (the retail-company) and
| p.Part-Kind = k
| := ASK-FOR-REPLENISHMENT(k) };
 type factory with
 { var replenishment-quantity:integer;

| procedure ASK-FOR-REPLENISHMENT(k:kind)
 := loop for x from 1 to replenishment-quantity
 do create part with

 { Owner <- (the retail-company),
| Part-Kind <- k } }

When an order is created, in addition to inserting it into the Customer relation with the customer
creating that order (Customer <- (the customer), as before), it is also inserted into the new
Order-Kind relation with some non-deterministically chosen kind (Order-Kind <- (any kind)).
When an order is handled, the part transferred to the customer must also be of the appropriate kind
(ensured by p.Part-Kind = order.Order-Kind). Finally, when replenishment occurs, it is for a
particular kind of part. Note however that the replenishment quantity has not been parameterized
by the kind of part being replenished, although it certainly could have been. There are obviously
numerous variations on how the parameterization is actually performed, each of which would give
rise to a slightly different specification.

2.4 Evolving the initial specification to have quantities in orders
In a different evolution, we introduce the notion that each order has a non-zero quantity. Note that
this is an evolution of the original specification, not of the specification evolved to have multiple
kinds of parts. This is to separate concerns, and retain simplicity.

 type part;

 relation Ovner(part,
 owner:customer union retail-company union factory);

 type order;

 relation Customer(part,customer);

| relation Quantity(order,integer)

 type customer with
 { demon ISSUE-ORDER()
 := create order with
 { Customer <- (the customer),
 Quantity <- (any i:integer | i>O) } };

 type retail-company with
 { demon HANDLE-ORDER(order) \
 when start extant order
| := let (q:integer | order.Quantity = q,
| setp:setof(part) |
| size(setp)= q and
| for-all (p:part) p in setp => p.Owner = (the retail-company)) | |
| atomic (loop (p over setp)
| do p.Owner <- order.Customer);

 demon REPLENISH()
 when start not exists (p:part)
 p.Owner = (the retail-company)
 := ASK-FOR-REPLENISHMENT() };

 type factory with
 { var replenishment-quantity:integer;

 procedure ASK-FOR-REPLENISHMENT()

 := loop for x from 1 to replenishment-quantity
 do create part with
 { Owner <- (the retail-company) } }

The more complex form of the statement of HANDLE-ORDER essentially selects a set of parts such
that the size of that set is the quantity of the order (size(setp) = q) and each element of that set
is a part owned by the retail-company (for-all (p:part) ...).

There may be a problem with the above specification if a customer orders a quantity of parts
greater than the company's stock, in which case the order will not be handled until the level of stock
is replenished to (at least) the quantity of the order (which need not necessarily occur if the
replenishment quantity is small relative to the order). This could be dealt with by having HANDLE-
ORDER divide large orders into two, so that the first portion can be filled immediately, while the
remainder is put on back-order, or alternatively having pending orders cause a request for an
appropriate quantity of replenishment. We will not pursue either of these options here, but clearly
any reasonable codification of this knowledge would either add these as further evolutions, or at
least keep some record of the potential inadequacies of this specification.

2.5 Combining evolutions

Having evolved the specification in two different ways, we now consider how to bring those
together, i.e., how to achieve a single specification with part kinds and order quantities. The
advantage of this approach is that it encourages the explicit consideration of the interactions that
arise during combination.

In combining our two evolutions of the initial specification of the retail company, we most likely
would wish to allow customers to issue orders which can have different quantities for various kinds
of parts, and have the retail company handle such orders accordingly. We may need to take a
moment to consider how the requirement on the quantity of an order being non-zero (this
requirement is embedded in the ISSUE-ORDER demon) is to be evolved. Presumably, we wish to
insist only that the total quantity of parts ordered is non-zero, not that the number of parts of each
kind be non-zero. Other than this detail, combination is relatively straightforward, although leads to
a yet-larger specification than the initial specification, or either of its evolutions (as should be
expected).

The specification that results is shown below - each order is related to some number of suborders,
each of which is related to a kind and a quantity. When an order is created, a suborder for some
non-zero quantity of each kind of part is optionally created, subject to the postcondition that there
must be a suborder for at least one kind of part (thus ensuring that the total quantity of parts ordered
is non-zero, without requiring that the number of parts of each kind is non-zero, as discussed
above). When an order is handled, the appropriate set of parts of appropriate kinds is transferred to
the customer.

type kind;

type part;

relation Owner(part,
 owner:customer union retail-company union factory);

relation Part-Kind(part,kind);

type order;

type suborder;

relation Customer(part,customer);

relation SubOrderOf(suborder,order);

relation Order-Kind(suborder,kind);

relation Quantity(suborder,integer);

type customer with
{ demon ISSUE-ORDER()
 := atomic
 (create order with
 { Customer <- (the customer) },
 loop (k | kind)
 do optionally
 create suborder with
 { SubOrderOf <- order;
 Order-Kind <- k;
 Quantity <- (any i:integer | i>O) }
 postcondition exists (s:suborder) SubOrderOf(s,order)) };

type retail-company with
{ demon HANDLE-ORDER(order)
 when start extant order
 := loop (s | SubOrderOf(s,order))
 do let (q:integer | s.Quantity = q,
 setp:setof(part) |
 size(setp)= q and
 for-all (p:part) p in setp =>
 p.Owner = (the retail-company) and
 p.Part-Kind = s.Order-Kind)
 atomic (loop (p over setp) do p.Owner <- order.Customer);

demon REPLENISH(k:kind)
when start not exists (p:part)
 p.Owner = (the retail-company) and p.Part-Kind = k
:= ASK-FOR-REPLENISHMENT(k) };

type factory with
{ var replenishment-quantity:integer;

procedure ASK-FOR-REPLENISHMENT(k:kind)
:= loop for x from 1 to replenishment-quantity
 do create part with
 { Owner <- (the retail-company),
 Part-Kind <- k } }

3 Implications for interactive design

3.1 Libraries, instantiation and evolution
In the retail company example, extra details introduced in both of the evolutions added to the size
and complexity of the specification. Furthermore, even for the simple evolutions of this example,

further options were apparent (e.g., whether or not to parameterize the replenishment quantity by
the part kind). In general we may expect a single specification that encompassed a broad range of
retail company possibilities to be rather large and complex. Alternatively, providing coverage (in a
library of components) by populating that library with a multitude of versions of retail company
like specifications would lead to a library of unwieldy size. Our hope is that evolution offers a third
alternative, in which the library's content of components is complemented by an array of evolution
transformations. The user would select a component near to the one wanted, and then use evolution
transformations to customize that component. Because similar evolutions can be applied to many
different components (e.g., parameterization is a very general concept), they effectively multiply
the size of the library. This is at the cost of requiring a different form of interaction with the user,
one involving sequences of evolution rather than the traditional instantiation of a generic
component.

3.2 Refinement, evolution and designing from ideals
The incremental style of development (of programs, specifications or requirements) in which an
initial very abstract formulation of some task is incrementally refined to introduce successive levels
of detail has been well-studied and has advantages. Our evolution transformations are not limited to
pure refinement; in the retail company example, the introduction of quantities into orders and their
handling gave rise to new possibilities of 'starvation' (large orders that remain unfilled) that are not
readily seen as refinements of the behaviors of the initial specification. Evolutions thus offer an
extension of the paradigm. One consequence ofthis is that it is possible to start with much more
idealized statements of specifications, relying upon evolution to retract the unrealistic assumptions.
The development history then records how thos~ ideals were compromised. This history is useful
for both clear exposition and future maintenance: if changes occur to the environment surrounding
the software, then it may be possible to look back through the development history and see how to
adapt to those changed conditions. Without such a history, that is, left with only the end-product of
a design process, we would be forced to rediscover design decisions in the face of change.

3.3 Knowledge organization and composition
It is clear that other approaches to structuring and manipulating knowledge organized as software
components will continue to have application - evolution transformations should supplement, not
supplant them. Composition of components is one such approach (e.g., ACT TWO [1]). In the retail
company example no mention was made of scheduling the handling of customer orders the
specification denoted all possible schedulings, without imposing any criteria such as handling
orders in the order in which they were received. I consider scheduling to be a basic notion which
has its own space of elaborations (structured using refinements and evolutions, of course) to
provide alternative scheduling strategies (e.g., FIFO, priority levels) and elaborated behaviors (e.g.,
putting requests on hold, cancellation, preempting). A realistic retail company specification will
compose ordering and replenishment activity with scheduling concepts and mechanisms.
Organization of these classes of components (scheduling, inventory control, etc) may well follow a
more traditional hierarchical form such as that suggested by the Requirements Apprentice's cliché
library [8].

3.4 Near-miss specification and mismatch discovery

If near-miss specification using evolution and customization is to be put into practice, it requires
support not only for conducting evolution but also for detecting the need for evolution. It would no
longer be the case that an 'incorrect' specification (or piece of specification) arose rarely and only

by mistake, rather it would be the norm to expect to progress through an alternation of mismatch-
detection and evolution. Comparisons between the state of the design so far and other descriptions
that the user provides (e.g., scenarios of system behavior, concrete examples, specific viewpoints)
would become the focus of the design activity, and comprise a major part of communication
between system and user. Selection of the appropriate evolution is one of the key steps of this
proposed methodology, and should be a cooperative activity blending machine capabilities and
human responsibilities. Human input is required to indicate deficiencies in the current form of the
specification, or provide further information (the other descriptions referred to above) which the
system can detect deficiencies. The machine can then search for all the evolutions that would
potentially correct these deficiencies. Finally the human picks out the particular evolution(s) to be
applied. In our ARIES system we employ this strategy to pick the evolution transformations to be
used for specification construction [5], and it seems reasonable to suppose that the same strategy
will apply to customization of specifications.

4 Acknowledgments
This research has been supported in part by Defense Advanced Research Projects Agency grant No.
NCC-2-520, and in part by Rome Air Development Center contract No. F30602-85-C-0221 and
F30602-89-C-0103. Views and conclusions contained in this document are those of the author and
should not be interpreted as representing the official opinion or policy of DARPA, RADC, NSF,
the U.S. Government, or any other person or agency connected with them. The author wishes to
acknowledge the Software Sciences Division at ISI for providing the context in which this research
has been conducted.

References

[1] H. Ehrig, P. Boehm, and W. Fey. Algebraic concepts for formal specifications and
transformation of modular software systems. Technical Report Bericht-Nr. 90/4, Technische
Universitaet Berlin, 1990.

[2] M.S. Feather. Constructing specifications by combining parallel elaborations. IEEE
Transactions on Software Engineering, 15(2):198-208, February 1989.

[3] M.S. Feather. Specification evolution and program (re)transformation. In Proceedings of the 5th
Annual RADC Knowledge-Based Software Assistant (KBSA) Conference, Liverpool, NY,
September 1990, pages 403-417, 1990.

[4] A. Goldberg. Reusing software developments. In Proceedings, 4th Annual Knowledge-Based
Software Assistant (KBSA) Conference, 1989.

[5] W.L. Johnson and M.S. Feather. Building an evolution transformation library. In Proceedings,
12th International Conference on Software Engineering, Nice, France, pages 238-248. IEEE
Computer Society Press, March 1990.

[6] W.L. Johnson and M.S. Feather. Using evolution transformations to construct specifications. In
M. Lowry and R. McCartney, editors, Automating Software Design. AAAI Press, 1991.

[7] W.L. Johnson and D.R. Harris. Requirements analysis using aries: themes and examples. In
Proceedings of the 5th Annual RADC Knowledge-Based Software Assistant (KBSA)
Conference, Liverpool, NY, September 1990, pages 121-131,1990.

[8] H.B. Reubenstein and R.C. Waters. The requirements apprentice: An initial scenario. In
Proceedings, 5th International Workshop on Software Specification and Design, Pittsburgh,
Pennsylvania, USA, pages 211-218. Computer Society Press of the IEEE, 1989.

 [9] A. Solvberg and C.H. Kung. On structural and behavioral modelling of reality. In Proceedings
of the IPIP TC2 WG2.5 WC on Database Semantics, Hasselt, Belgium, 1985.

